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Summary

We propose and investigate an additive regression model for symmetric positive-definite
matrix-valued responses and multiple scalar predictors. The model exploits the Abelian group
structure inherited from either of the log-Cholesky and log-Euclidean frameworks for symmetric
positive-definite matrices and naturally extends to general Abelian Lie groups. The proposed
additive model is shown to connect to an additive model on a tangent space. This connection
not only entails an efficient algorithm to estimate the component functions, but also allows one
to generalize the proposed additive model to general Riemannian manifolds. Optimal asymp-
totic convergence rates and normality of the estimated component functions are established, and
numerical studies show that the proposed model enjoys good numerical performance, and is not
subject to the curse of dimensionality when there are multiple predictors. The practical merits of
the proposed model are demonstrated through an analysis of brain diffusion tensor imaging data.

Some key words: Additive regression; Asymptotic normality; Diffusion tensor; Log-Cholesky metric; Log-Euclidean
metric; Riemannian manifold; Toroidal data.

1. Introduction

Data in the form of symmetric positive-definite matrices arise in many areas, including com-
puter vision (Rathi et al., 2007; Caseiro et al., 2012), signal processing (Arnaudon et al., 2013;
Hua et al., 2017), medical imaging (Fillard et al., 2007; Dryden et al., 2009) and neuroscience
(Friston, 2011), among other fields and applications. For instance, they are used to model brain
functional connectivity that is often characterized by covariance matrices of blood-oxygen-level-
dependent signals (Huettel et al., 2008). In diffusion tensor imaging analysis (Le Bihan, 1991), a
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3 × 3 symmetric positive matrix that is computed for each voxel describes the dominant shape of
local diffusion of water molecules. While the analysis of symmetric positive-definite matrices as
responses in a regression model is our primary emphasis in this paper, our results more generally
extend to responses with a Lie group structure that include data on the torus.

The space S+ of symmetric positive-definite matrices is a nonlinear metric space and, depend-
ing on the metric, forms a Riemannian manifold. Various metrics have been studied (Pigoli et al.,
2014); an important criterion for choosing a metric is to avoid the swelling effect. This refers to
the phenomenon that the determinant of the Fréchet mean of a set of symmetric positive-definite
matrices may be substantially larger than that of any of the constituent matrices. The swelling
effect becomes evident in the geodesics connecting two elements of S+ (Arsigny et al., 2007),
negatively affects specifically the Frobenius metric and various other metrics, and is problematic
for many applications. These include diffusion tensor imaging, where a diffusion tensor is rep-
resented by a symmetric positive-definite matrix and the determinant quantifies diffusion of the
tensor. The swelling effect will then lead to distortions when quantifying diffusion.

The abundance of S+-valued data in many areas stands in contrast with the relative sparsity
of work on their statistical analysis, in particular regarding regression with S+-valued responses.
Existing work includes Riemannian frameworks to analyse diffusion tensor images with a focus
on averages and modes of variation (Pennec et al., 2006; Fletcher & Joshib, 2007) and various
versions of nonparametric regression such as spline regression (Barmpoutis et al., 2007), local
constant regression (Davis et al., 2010), intrinsic local linear regression (Yuan et al., 2012), wavelet
regression (Chau & von Sachs, 2019) and Fréchet regression (Petersen et al., 2019). Various
metric, manifold and Lie group structures have been proposed, for example, the trace metric
(Lang, 1999), affine-invariant metric (Moakher, 2005; Pennec et al., 2006; Fletcher & Joshib,
2007), log-Euclidean metric (Arsigny et al., 2007), log-Cholesky metric (Lin, 2019), scaling-
rotation distance (Jung et al., 2015) and Procrustes distance (Dryden et al., 2009). As S+is a
Riemannian manifold and more generally a metric space, regression techniques developed for
general Riemannian manifolds (e.g., Pelletier, 2006; Shi et al., 2009; Davis et al., 2010; Steinke
et al., 2010; Fletcher, 2013; Hinkle et al., 2014; Cornea et al., 2017, among many others) and
metric spaces (Hein, 2009; Chen & Müller, 2022; Lin & Müller, 2021) also apply to S+.

Additive regression originating with Stone (1985) is known to be an efficient way of avoiding
the well-known curse of the dimensionality problem that one faces in nonparametric regression
when the dimension of the covariate vector increases, but so far has been by and large limited
to the case of real-valued and functional responses. Examples for additive regression approaches
for real-valued responses include the original work on smooth back fitting (Mammen et al., 1999)
and extensions to generalized additive models (Yu et al., 2008), additive quantile models (Lee
et al., 2010), generalized varying coefficient models (Lee et al., 2012), errors in variables (Han
& Park, 2018) and functional or distributional responses (Scheipl et al., 2015; Park et al., 2018;
Han et al., 2020; Jeon & Park, 2020).

In this paper, we develop an additive regression model for responses residing in a Lie group that
includes the space S+ as the primary example, with an extension to general Riemannian mani-
folds. This paper contains three major contributions. First, to the best of our knowledge, this is the
first paper to study additive regression for S+-valued responses, counteracting the curse of dimen-
sionality while maintaining a high degree of flexibility. Previous studies for modelling S+-valued
responses focused on unstructured nonparametric regression such as local constant/polynomial
regression that are well known to be subject to the curse of dimensionality when there are many
predictors.

Second, by focusing on Abelian Lie group-valued responses that include data on the torus
(Eltzner et al., 2018), as well as S+-valued responses, we propose a novel intrinsic group additive
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Additive models 3

regression model that directly exploits the Abelian group structure of the responses. This sets
our work apart, as previously only the general manifold structure of responses was considered
in the few existing nonadditive regression approaches. To the best of our knowledge, this is the
first work to connect additive regression with Lie groups. This connection extends the reach of
additive models in a very natural way.

Third, we show that this group additive model can be transformed into an additive model on
tangent spaces by utilizing the Riemannian logarithmic map, which paves the way for extend-
ing the additive model to the case of responses that lie on more general manifolds. While
throughout we showcase the proposed approaches for the space S+of symmetric positive-definite
matrices with suitable metrics, our results are by no means limited to this type of response,
and are applicable to additive regression modelling for a much larger class of manifold-valued
responses.

2. Preliminaries on differential geometry

We compile here some basic notions for Riemannian manifolds and Lie groups, referring
readers to § S.1 of Shao et al. (2022) for a self-contained note on basic concepts of Riemannian
geometry and to the text by Lee (2018) for a comprehensive treatment. In the following, L denotes
a simply connected smooth manifold modelled on a D-dimensional Hilbert space.

The tangent space at y ∈ L, denoted by TyL, is a linear space consisting of velocity vectors
α′(0), where α : (−1, 1) → L represents a differentiable curve passing through y, i.e., α(0) = y.
Each tangent space TyL is endowed with an inner product gy that varies smoothly with y and
is a D-dimensional Hilbert space with the induced norm denoted by ‖ · ‖y. The inner products
{gy : y ∈ L} are collectively denoted by g, referred to as the Riemannian metric of L that also
induces a distance d on L.

A geodesic γ is a constant-speed curve defined on [0, ∞) such that, for each t ∈ [0, ∞), the
segment γ ([t, t + ε]) is the shortest path connecting γ (t) and γ (t + ε) for all sufficiently small
ε > 0. The Riemannian exponential map Expy at y ∈ L is a function mapping TyL into L and
defined by Expy(u) = γ (1)with γ (0) = y and γ ′(0) = u ∈ TyL. Conversely, γy,u(t) = Expy(tu)
is a geodesic starting at y and with direction u.

For a tangent vector u ∈ TyL, the cut time cu is the positive number such that γy,u([0, cu]) is
a shortest path connecting γy,u(0) and γy,u(cu), but γy,u([0, cu + ε]) is not a shortest path for any
ε > 0. It turns out that the exponential map Expy(tu) for u ∈ TyL is invertible before the cut time
cu. Formally, the inverse of Expy, denoted by Logy and called the Riemannian logarithmic map
at y, can be defined by Logyz = tu for z ∈ Ey := {Expy(tu) : u ∈ TyL, ‖u‖y = 1, 0 � t < cu}
such that Expy(tu) = z.

Let C∞(L) denote the collection of smooth real-valued functions defined on L. For a smooth
function f ∈ C∞(L) and a tangent vector v ∈ TyL, the covariant derivative of f at y along the
direction v, denoted by ∇vf , is defined by

∇v f := ( f ◦ γ )′(0) = lim
t→0

f {γ (t)} − f (y)

t
,

where γ : [−1, 1] → L is a differentiable curve such that γ (0) = y and γ ′(0) = v.
A smooth vector field U is a smooth function defined on L such that U (y) ∈ TyL for all y ∈ L.

The covariant derivative measures how fast a map changes along a direction and is defined for
smooth vector fields as follows. Let �(L) denote the collection of smooth vector fields on L. A
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4 Z. Lin, H.-G. Müller and B. U. Park

connection is a map ∇ : �(L)×�(L) → �(L), with (V , U ) 	→ ∇V U , that satisfies the following
properties:

(i) ∇V U is linear over C∞(L) in V , i.e., ∇ fV1+gV2U = f ∇V1U + g∇V2U for f , g ∈ C∞(L)
and V1, V2 ∈ �(L);

(ii) ∇V U is linear over R in U , i.e., ∇V (a1U1 + a2U2) = a1∇V U1 + a2∇V U2 for a1, a2 ∈ R

and U1, U2 ∈ �(L);
(iii) ∇V ( fU ) = f ∇V U + (∇V f )U for f ∈ C∞(L).

For f ∈ C∞(L) and a smooth vector field U , fU denotes a smooth vector field defined by
( fU )(y) = f (y)U (y) for all y ∈ L, and ∇v f is a smooth real-valued function defined by
(∇v f )(y) = ∇V (y) f for y ∈ L. The quantity ∇V U is called the covariant derivative of U in
the direction V . The value of ∇V U at y depends on V only through its value at y (Proposition
4.5 of Lee, 2018), which makes the expression ∇vU sensible for v ∈ TyL; ∇vU is called the
covariant derivative of U at y in the direction v.

For U , V ∈ �(L), the function fU ,V defined by fU ,V (y) = gy{U (y), V (y)} is in C∞(L).
A connection ∇ on L is compatible with the metric g on L if ∇v fU ,V = gy{∇vU , V (y)} +
gy{U (y), ∇vV } for all U , V ∈ �(L), each y ∈ L and each tangent vector v ∈ TyL. For U , V ∈
�(L), [U , V ] denotes a new vector field satisfying ∇[U ,V ]f = ∇U ∇v f − ∇V ∇U f for all f ∈
C∞(L). If ∇U V − ∇V U = [U , V ] for all U , V ∈ �(L), then we say that the connection ∇ is
torsion-free. For a Riemannian manifold, there exists a unique connection that is both torsion-
free and compatible with the Riemannian metric. It is called the Levi–Civita connection with
Levi–Civita covariant derivative as its induced covariant derivative.

Curvature quantifies the degree of deviation from being flat. Define the map R(U , V , W ) =
∇U ∇V W − ∇V ∇U W − ∇[U ,V ]W for U , V , W ∈ �(L). The value of R(U , V , W ) at y depends
only on the values of U , V , W at y, and therefore we can write R(u, v, w) for tangent vectors
u, v, w at the same point. The sectional curvature at y ∈ L is a real-valued function on TyL×TyL
defined for u, v ∈ TyL by

K(u, v) = gy{R(u, v, v), u}
gy(u, u)gy(v, v)− gy(u, v)2

.

A Hadamard manifold is a complete and simply connected Riemannian manifold that has
everywhere nonpositive sectional curvature and is thus a Hadamard space.

Given a curve γ (t) on L, t ∈ I for a real interval I , a vector field U along γ is a smooth map
defined on I such that U (t) ∈ Tγ (t)L. We say that U is parallel along γ if ∇γ ′(t)U = 0 for all t ∈ I .
In this paper, we primarily focus on parallel vector fields along geodesics. Let γ : [0, 1] → L be
a geodesic connecting y and z, and let U be a parallel vector field along γ such that U (0) = u
and U (1) = v. Then we say that v is the parallel transport of u along γ , denoted by τy,zu = v.
Parallel transport can be used as an intrinsic mechanism to compare tangent vectors residing at
different points, e.g., via parallelly transporting the tangent vectors to the tangent space at a fixed
point on L, where they can be easily compared.

A Lie algebra is a vector space g endowed with an alternating binary operation [·, ·] : g×g → g
satisfying the following axioms:

(i) (bilinearity) [au + bv, w] = a[u, w] + b[v, w] and [w, au + bv] = a[w, u] + b[w, v] for all
a, b ∈ R and u, v, w ∈ g;

(ii) (alternativity) [u, u] = 0 for all u ∈ g;
(iii) (Jacobi identity) [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ g.
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When L is a group such that the group operation ‘⊕’ and inverse ι : y 	→ y−1 are smooth,
(L, ⊕) is a Lie group. We say that a vector field U on a Lie group (L, ⊕) is left invariant if
U (y ⊕ z) = (DzLy){U (z)} for all y, z ∈ L, where Ly : z 	→ y ⊕ z is the left translation induced
by y and DzLy is the differential of Ly at z. Right-invariant vector fields are defined in a similar
fashion via right translations. One can show that any left-invariant vector field U is fully specified
by its value U (e) at the group identity element e. Consequently, the collection of left-invariant
vector fields, denoted by h, can be identified with the tangent space TeL. In addition, the space
h gives rise to a Lie algebra, as follows. For two smooth vector fields U , V on the Lie group
L, the Lie bracket [U , V ] is the vector field determined by [U , V ]( f ) = ∇U ∇v f − ∇V ∇U f for
f ∈ C∞(L). It can be shown that the vector space h endowed with the Lie bracket is a Lie algebra.
If L is Abelian then [U , V ] = 0 for any U , V ∈ h.

A Riemannian metric g on a Lie group is left invariant if gz(u, v) = gy⊕z{(DzLy)u, (DzLy)v}
for all y, z ∈ L and u, v ∈ TzL. Right-invariant metrics can be defined in a similar fashion. A
metric is bi-invariant if it is both left invariant and right invariant.

The Lie exponential map, denoted by exp, that maps g into L is defined by exp(u) = γ (1), where
γ : R → L is the unique one-parameter subgroup such that γ ′(0) = u ∈ g. Its inverse, if it exists,
is called the Lie logarithmic map and denoted by log. When g is bi-invariant, exp = Expe, that is,
the Riemannian exponential map at the identity element coincides with the Lie exponential map.

For random elements Y ∈ L, for a Lie group L, the Fréchet function is F(y) = Ed2(y, Y ),
where d is the Riemannian distance function induced by the metric on L. If L is a Hadamard
manifold and F(y) < ∞ for some y ∈ L, and hence F(y) < ∞ for all y ∈ L according to the
triangle inequality, the minimizer of F(y) exists and is unique (Sturm, 2003). It is known as the
Fréchet mean and is denoted by E⊕Y .

3. Additive models for Lie groups

In this section we develop an additive regression model for Lie group-valued responses. The
main motivating example of Lie groups is the space S+

m of m × m symmetric positive matrices
due to their ubiquity and practical relevance.

Example 1 (S+
m with the log-Euclidean metric). The space S+

m is a smooth submanifold of
R

m×m. Its tangent spaces are Sm, the collection of m×m symmetric matrices. The matrix logarithm
is a smooth bijective map between S+

m and Sm, and thus can be used to transfer the canonical
Euclidean structure of Sm to S+

m . Recall that, for a symmetric matrix S, exp(S) = Im +∑∞
j=1 Sj/j!

is a symmetric positive-definite matrix. The inverse of exp, denoted by log, exists and is called the
matrix logarithmic map. Both exp and log are smooth maps between S+

m and Sm. The operation
‘⊕’defined as P1⊕P2 = exp{log(P1)+log(P2)} for P1, P2 ∈ S+

m turns S+
m into anAbelian group.

The canonical Riemannian metric on Sm is trace(S1S2) for S1, S2 ∈ Sm and can be transferred to a
Riemannian metric on S+

m given by gP(U , V ) = trace[{(DP log)U }{(DP log)V }] for U , V ∈ Sm,
where DP log denotes the differential of the log at P. It turns out that g is a bi-invariant metric
on (S+

m , ⊕) that is isomorphic to the group of Sm with the usual matrix addition as the group
operation (Proposition 3.4 of Arsigny et al., 2007). This metric, termed the log-Euclidean metric
and specifically designed to eliminate the swelling effect (Arsigny et al., 2007), turns S+

m into a
Hadamard manifold and a bi-invariant Abelian Lie group. This metric is invariant to permutation,
but is not affine invariant.

Example 2 (S+
m with the log-Cholesky metric). The log-Cholesky metric (Lin, 2019) utilizes

the Cholesky decomposition to transfer a Lie group structure on the space of lower triangular
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matrices of positive diagonals to the space of symmetric positive-definitive matrices. Specifically,
let lt(m) be the space of m×m lower triangular matrices and lt+(m) ⊂ lt(m) the subspace, such
that L ∈ lt+(m) if all diagonal elements of L are positive. One can show that lt+(m) is a smooth
submanifold of lt(m) and its tangent spaces are identified with lt(m). For a fixed L ∈ lt+(m),
we define a Riemannian metric g̃ on lt+(m) by g̃L(A, B) = ∑

1�j<i�m AijBij + ∑m
j=1 AjjBjjL

−2
jj ,

where Aij denotes the element of A in the ith row and jth column. It is an Abelian Lie group with
the operation � defined by L1 � L2 = L(L1) + L(L2) + D(L1)D(L2), where L(L) is the strict
lower triangular part of L, that is, {L(L)}ij = Lij if j < i and {L(L)}ij = 0 otherwise, and D(L)
is the diagonal part of L, that is, a diagonal matrix whose diagonals are equal to the respective
diagonals of L. One can show that g̃ is a bi-invariant metric for the Lie group lt+(m) with the
group operation �. It is well known that a symmetric positive-definite matrix P is associated with
a unique matrix L in lt+(m) such that LLT = P. We refer to L as the Cholesky factor of P. For
U , V ∈ TPS+

m = Sm, we define the metric gP(U , V ) = g̃L{L(L−1UL−T)1/2, L(L−1VL−T)1/2},
where (S)1/2 = L(S)+D(S)/2 for a matrix S. We also turn S+

m into anAbelian Lie group with the
operator ⊕ such that P1 ⊕P2 = (L1 �L2)(L1 �L2)

T, where L1 and L2 are the Cholesky factors of
P1 and P2, respectively. The metric g, also specifically designed to eliminate the swelling effect
(Lin, 2019), is a bi-invariant metric of the Lie group (S+

m , ⊕) and turns S+
m into a Hadamard

manifold. In our experience, the log-Cholesky metric is computationally more efficient, but not
invariant to permutation.

The torus serves as an example for a relevant Lie group that is not related to the space S+
m and

shows that our approach is not limited to symmetric positive matrices.

Example 3 (Tori). Let S = {a + b
√−1: a, b ∈ R, a2 + b2 = 1} be the unit circle.

It is an Abelian Lie group when the group operation is the standard multiplication of com-
plex numbers. In addition, S is a Riemannian submanifold of R

2. A k-torus T
k is the direct

product of k copies of S, and is therefore also an Abelian Lie group. Its Lie algebra is g =
(−1)1/2R

k = {(a1
√−1, . . . , ak

√−1) : a1, . . . , ak ∈ R} with the trivial Lie bracket [u, v] = 0 for
all u, v ∈ g. The Riemannian metric on T

k is the product Riemannian metric of S, and this metric
is bi-invariant. Data on tori occur in the statistical analysis of wind directions and RNA data
(Eltzner et al., 2018).

Given scalar variables X1 ∈ X1, . . . , Xq ∈ Xq, which are predictors that are paired with a Lie
group-valued response Y and where Xj ⊂ R, j = 1, . . . q, are compact domains, the proposed
Lie group additive model is as follows, where we make use of the Lie group operation ⊕:

Y = μ⊕ w1(X1)⊕ · · · ⊕ wq(Xq)⊕ ζ . (1)

Here μ = E⊕Y is the Fréchet mean of Y , each wk is a function that maps Xk into L and ζ is
random noise with E⊕ζ = e, the group identity element e. For identifiability, we require that
E⊕{wk(Xk)} = e, k = 1, . . . , q. In addition, we assume existence and uniqueness of μ; see § 4
for more discussions. This model generalizes the additive model for Euclidean responses to L-
valued responses. It includes the effect of the additive component functions on the mean response
and of noise on the responses, neither of which can be additively modelled in the absence of a
linear structure of the responses. The task at hand is to estimate the unknown parameter μ and
the component functions w1, . . . , wq, given a sample of independently and identically distributed
observations of size n. To overcome the challenge of the absence of a linear structure in L, the
following result proves essential.
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Proposition 1. If (L, ⊕) is an Abelian Lie group endowed with a bi-invariant metric g that
turns L into a Hadamard manifold, then (1) is equivalent to

LogμY =
q∑

k=1

τe,μlogwk(Xk)+ τe,μlogζ . (2)

In (2), we transform the left-hand side of (1) by the Riemannian log map Logμ, so that
ELogμY = 0, and the right-hand side of (1) by the Lie log map log, whereupon w1(X1) ⊕
· · · ⊕ wq(Xq) is decomposed into additive components in the vector space TμL, so that the
standard smooth back-fitting algorithm can be adopted to estimate w1, . . . , wq. Specifically, let
fk(Xk) = τe,μlogwk(Xk) and ε = τe,μlogζ . Then, according to Proposition 1, one may rewrite
model (1) as LogμY = ∑q

k=1 fk(Xk) + ε, where Eε = Eτe,μlogζ = τe,μElogζ = 0 since
E⊕ζ = e. Note that E{∑q

k=1 fk(Xk)} = 0 since ELogμY = 0. The identifiability of the individual
component functions fk follows from Efk(Xk) = 0 for all k = 1, . . . , q, which is a consequence
of E⊕{wk(Xk)} = e in (1). These considerations motivate us to estimate the component functions
wk through estimation of the fk , as follows.

Step 1. Compute the sample Fréchet mean μ̂. Closed-form expressions of μ̂ are available for
special cases of L, including L = S+

m with the log-Cholesky or log-Euclidean metric; see the
Supplementary Material for details. Alternative numerical algorithms (e.g., Yang, 2007) are also
available.

Step 2. Compute Logμ̂Yi. There are closed-form expressions available for L = S+
m with

the log-Cholesky or log-Euclidean metric; see the Supplementary Material. Numerical methods
as described in § 5.3 of A. Brun’s 2007 PhD thesis from the University of Linköping are also
available.

Step 3. Solve the system of integral equations

f̂k(xk) = m̂k(xk)− n−1
n∑

i=1

Logμ̂Yi −
∑

j : j |=k

∫
Xj

f̂j(xj)
p̂kj(xk , xj)

p̂k(xk)
dxj,

subject to the constraints
∫
Xj

f̂k(xk)p̂k(xk) dxk = 0 for 1 � k � q. Here, p̂k(xk) =
n−1 ∑n

i=1 Khk (xk , Xik), p̂kj(xk , xj) = n−1 ∑n
i=1 Khk (xk , Xik)Khj (xj, Xij) and

m̂k(xk) = n−1p̂k(xk)
−1

n∑
i=1

Khk (xk , Xik)Logμ̂Yi,

where Khj is a kernel function with
∫
Xj

Khj (u, v) du = 1 for all v ∈ Xj; see Jeon & Park (2020).

Note that n−1 ∑n
i=1 Logμ̂Yi = 0 since μ̂ is the sample Fréchet mean.

Step 4. Finally, estimate wk(xk) by ŵk(xk) = exp{τμ̂,ef̂k(xk)}.
Step 3 is a multivariate version of the standard smooth back-fitting system of equations

(Mammen et al., 1999). Since the tangent space Tμ̂L is also a Hilbert space, the above smooth
back-fitting system of equations can be interpreted from a Bochner integral perspective; see Jeon
& Park (2020), where also the empirical selection of bandwidths hk is discussed.
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Remark 1. By Theorem 3.6 of Bröcker & tom Dieck (1985), any Abelian Lie group is iso-
morphic to T

k × R
s, where T

k denotes a k-torus defined in Example 3. However, our model,
estimation and theory do not rest on this isomorphism, as it does not lead to a natural extension
to general Riemannian manifolds. Instead, in the above development we connect the additive
model (1) on Lie groups to an additive model (2) on the tangent space at the Fréchet mean
via Proposition 1. This allows an immediate extension to general Riemannian manifolds. Since
neither our estimation method nor the theory presented in § 5 relies on the isomorphism to T

k ×R
s,

our methods and theory cover both Lie groups and general Riemannian manifolds.

4. Extension to Riemannian manifolds

When S+
m is endowed with the affine-invariant metric (Moakher, 2005; Pennec et al., 2006;

Fletcher & Joshib, 2007), it is generally not an Abelian Lie group with a bi-invariant metric,
and then model (1) depends on the order of operations and is thus not additive. Specifically,
Proposition 1 ceases to hold. However, model (2) remains additive in all cases, suggesting a natural
extension to accommodate other metrics and general Riemannian manifolds. For a Riemannian
manifold M, which is not necessarily an Abelian Lie group, consider

LogμY =
q∑

k=1

fk(Xk)+ ε, (3)

where μ = E⊕Y , ε ∈ TμM is centred and of finite variance, and f1, . . . , fq : R → TμM
are unknown functions to be estimated. Model (3) includes (1) as a special case by setting
fk(x) = τe,μlogwk(x) and ε = τe,μlogζ according to Proposition 1, transforms the response into
the tangent space TμM and is thus applicable to general Riemannian manifolds, at the expense
of interpretability in the original space, as per the group operation in model (1).

For general Riemannian manifolds that might feature positive sectional curvature, the Fréchet
mean may not exist and therefore additional conditions are required for model (3). Specifically,
if (M, g) is a general Riemannian manifold and Y is a random element on M, we assume the
following.

Assumption 1. The minimizer of the Fréchet function F(·) = Ed2(·, Y ) exists and is unique.

This is automatically satisfied when M is a Hadamard manifold, such as the space S+
m with

either of the log-Cholesky and log-Euclidean metrics. For other manifolds, we refer the reader to
Bhattacharya & Patrangenaru (2003) and Afsari (2011) for conditions that imply Assumption 1.

For a nonempty subset A ⊂ M, let d(y, A) = inf {d(y, z) : z ∈ A} denote the distance between
y and the set A. For a positive real number ε, set Aε = {y : d(y, A) < ε} and A−ε = M\(M\A)ε .
When A = ∅, set Aε = ∅. The following assumption is only needed for the case where M is not
a Hadamard manifold.

Assumption 2. It holds that Pr{Y ∈ E−ε0
μ } = 1 for some ε0 > 0, where Eμ is defined in § 2.

If Assumptions 1 and 2 are satisfied, the proposed manifold additive model (3) remains well
defined, and the first three steps of the estimation method described in the previous section are
still valid and can be employed to estimate f1, . . . , fq, with L replaced by M.
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5. Theory

We first establish convergence rates and asymptotic normality of the estimators for the mean
and the component functions for general manifolds in the manifold additive model (3), and then
provide additional details for the space S+

m endowed with either the log-Cholesky metric or the
log-Euclidean metric. We consider a manifold M that satisfies one of the following conditions.

Condition 1. Manifold M is a finite-dimensional Hadamard manifold that has sectional
curvature bounded from below by c0 � 0.

Condition 2. Manifold M is a complete compact Riemannian manifold.

An example of a manifold satisfying Condition 1 is S+
m endowed with the log-Cholesky

metric, log-Euclidean metric or affine-invariant metric, while the unit sphere that is used to
model compositional data (Dai & Müller, 2018) serves as an example of a manifold that satisfies
Condition 2.

To establish the convergence rate of μ̂, we also make the following assumptions.

Assumption 3. Manifold M satisfies at least one of Conditions 1 and 2.

Assumption 4. For some constant c2 > 0, F(y) − F(μ) � c2d2(y,μ) when d(y,μ) is
sufficiently small.

Assumption 5. For some constant c3 > 0, for all y, z ∈ M, the linear operator Hy,z : TzM →
TzM, defined by gz(Hy,zu, v) = gz(∇uLogzy, v) for u, v ∈ TzM, has an operator norm that is
bounded by c3{1 + d(z, y)}.

Assumption 4 is satisfied for Hadamard manifolds with c2 = 1 according to Lemma S.7 of
Lin & Müller (2021), and the CAT(0) inequality that holds for Hadamard manifolds (Chapter
II.1 of Bridson & Häfliger, 1999). The assumption also holds for some manifolds of positive
curvature when data concentrate on a small region; see Example 4 of Lin & Müller (2021). The
operator Hy,z in the technical Assumption 5 is the Hessian of the squared distance function d;
see also equation (5.4) of Kendall & Le (2011). Assumption 5 is superfluous if the manifold M
is compact and is satisfied by manifolds of zero curvature. It can also be replaced with a uniform
moment condition on the operator norm of Hz,Y over all z in a small local neighbourhood of μ.
We then obtain a parametric convergence rate for the estimate μ̂ of the Fréchet mean μ.

Proposition 2. Assume that Assumptions 1, 3 and 4 hold and that Y is of second order. Then
d(μ̂,μ) = OP(n−1/2).

To obtain convergence rates of the estimated component functions, we require some additional
conditions that are standard in the literature on additive regression.

Condition 3. The kernel function K is positive, symmetric, Lipschitz continuous and supported
on [−1, 1] with

∫
K(x) dx = 1.

Condition 4. The bandwidths hk satisfy n1/5hk → αk > 0.

Condition 5. The joint density p of X1, . . . , Xq is bounded away from zero and infinity on
X ≡ X1 × · · · × Xq. The densities pkj are continuously differentiable for 1 � j |= k � q.
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10 Z. Lin, H.-G. Müller and B. U. Park

Condition 6. The additive functions fk are twice continuously (Fréchet) differentiable.

Without loss of generality, assume that Xk = [0, 1] for all k and let Ik = [2hk , 1 − 2hk ]. The
moment condition on ε in the following theorem is required to control the effect of the error of μ̂
as an estimator of μ on the discrepancies of Logμ̂Yi from LogμYi after parallel transport; see the
Supplementary Material. It is a mild requirement and is satisfied for example when the manifold
is compact or ‖ε‖μ follows a subexponential distribution.

Theorem 1. Under Assumptions 1–5 and Conditions 3–6, if E‖ε‖αμ < ∞ for some α � 10
and E(‖ε‖2

μ | Xj = ·) are bounded on Xj , respectively, for 1 � j � q, it holds that

max
1�k�q

∫
Ik

‖τμ̂,μ f̂k(xk)− fk(xk)‖2
μ pk(xk) dxk = OP(n

−4/5),

max
1�k�q

∫
Xk

‖τμ̂,μ f̂k(xk)− fk(xk)‖2
μ pk(xk) dxk = OP(n

−3/5),

where τμ̂,μ is the parallel transport operator along geodesics.

The following corollary is an immediate consequence of Theorem 1.

Corollary 1. Under the conditions of Theorem 1, for S+
m endowed with either the log-

Cholesky metric or the log-Euclidean metric,

max
1�k�q

∫
Ik

‖logŵk(xk)− logwk(xk)‖2
e pk(xk) dxk = OP(n

−4/5),

max
1�k�q

∫
Xk

‖logŵk(xk)− logwk(xk)‖2
e pk(xk) dxk = OP(n

−3/5).

To derive the asymptotic distribution of f̂k , we define Ck(x) = E{ε ⊗ ε | Xk = x}, where
u ⊗ v : TμM → TμM is a tensor product operator such that (u ⊗ v)z = gμ(u, z)v. Define


k(x) = α−1
k pk(x)

−1
∫

K(u)2 du · Ck(x), (4)

δk(x) = p′
k(x)

pk(x)

∫
u2K(u) du · f ′

k (x), (5)

δjk(x, v) = ∂pjk(x, v)

∂v

1

pjk(x, v)

∫
u2K(u) du · f ′

k (v), (6)


̃k(x) = α2
k · δk(x)+

∑
j:j |=k

α2
j

∫
Xj

pkj(x, u)

pk(x)
· δkj(x, u) du, (7)

where the αk are the constants in Condition 4. Let (
1, . . . ,
q) be a solution of the system of
equations


k(x) = 
̃k(x)−
∑
j:j |=k

∫
Xj

pkj(x, u)

pk(x)
·
j(u) du, 1 � k � q, (8)
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satisfying the constraints

∫
Xk

pk(x) ·
k(x) dx = α2
k ·

∫
Xk

pk(x) · δk(x) dx, 1 � k � q. (9)

Finally, define ck(x) = 1
2

∫
u2K(u) du · f ′′

k (x) and θk(x) = α2
k · ck(x)+
k(x).

We assume that the following conditions hold.

Condition 7. The E{ε ⊗ ε | Xk = ·} are continuous operators on Xk for all 1 � k � q and
operators E{ε ⊗ ε | Xj = ·, Xk = ·} are bounded on Xj × Xk for all 1 � j |= k � q.

Condition 8. The ∂p/∂xk , k = 1, . . . , q, exist and are bounded on X = ∏q
k=1 Xk .

Condition 7 is superfluous if the random noise ε is independent of the predictors X1, . . . , Xq. Let
Nμ(x) be the product measure N {θ1(x1),
1(x1)} × · · · × N {θq(xq),
q(xq)} on (TμM)q, where
N (θ ,
) denotes a Gaussian measure on TμM with mean vector θ and covariance operator 
.
For a set A, let Int(A) denote the interior of A.

Theorem 2. Suppose that Assumptions 1–5 and Conditions 3–8 hold, that E‖ε‖αμ < ∞ for

some α > 10 and that there exists α′ > 5/2 such that E(‖ε‖α′
μ | Xk = ·) are bounded on Xk for

all 1 � k � q. Then, for x = (x1, . . . , xq) ∈ Int(X ), it holds that [n2/5{τμ̂,μ f̂k(xk)− fk(xk)} : 1 �
k � q] → Nμ(x) in distribution. In addition, n2/5{∑q

k=1 τμ̂,μ f̂k(xk) − ∑q
k=1 fk(xk)} converges

to Nμ{θ(x),
(x)}, where θ(x) = ∑q
k=1 θk(xk) and 
(x) = 
1(x1)+ · · · +
q(xq).

For M = S+
m equipped with either the log-Cholesky metric or the log-Euclidean metric, the

above asymptotic normality can be formulated on the Lie algebra g. To this end, assume that

SPD

1 , . . . ,
SPD
q and 
SPD

1 , . . . ,
SPD
q are defined by (4)–(9), with Ck(x) and fk replaced by

E{logζ ⊗ logζ | Xk = x} andψk := logwk , respectively. Also, let cSPD
k = 1

2

∫
u2K(u) du ·ψ ′′

k (x)
and θSPD

k (x) = α2
k ·cSPD

k (x)+
SPD
k (x) for k = 1, . . . , q. The following corollary is an immediate

consequence of Theorem 2, by noting that the manifold S+
m when equipped with the log-Cholesky

metric or the log-Euclidean metric satisfies Assumptions 1–4 when the second moment of the
random noise ζ is finite.

Corollary 2. Assume that Conditions 3–8 hold and that E‖logζ‖αμ < ∞ for some α > 10.

Furthermore, assume that there exists α′ > 5/2 such that E(‖logζ‖α′
e | Xk = ·) are bounded on

Xk for all 1 � k � q. For S+
m endowed with either the log-Cholesky metric or the log-Euclidean

metric, for x = (x1, . . . , xq) ∈ Int(X ), it holds that [n2/5{logŵk(xk) − logwk(xk)} : 1 � k �
q] → NIm(x) in distribution. In addition, n2/5{∑q

k=1 logŵk(xk) − ∑q
k=1 logwk(xk)} converges

to NIm{θ(x),
(x)}, where Im is the m × m identity matrix, θ(x) = ∑q
k=1 θ

SPD
k (xk) and 
(x) =


SPD
1 (xq)+ · · · +
SPD

q (xq).

These results generalize the work of Jeon & Park (2020). One of the major technical challenges
that is addressed in Lemmas S1 and S2 in the Supplementary Material is to uniformly quantify
the discrepancy between logμ̂Yi and logμYi due to μ̂ |= μ, as the asymptotic behaviour of this
discrepancy plays an important role in the theoretical analysis.
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6. Simulations

To illustrate the numerical performance of the proposed manifold additive model estimators, we
conducted simulations for L = S+

m endowed with the log-Cholesky and log-Euclidean metrics,
respectively. We consider two matrix dimensions, m = 3 and m = 10. We set Xk = [0, 1]
for k = 1, . . . , q. The predictors X1, . . . , Xq are set to X1 = B2/3,2/3(T1) and Xk = �(Tk) for
k = 2, . . . , q, where B2/3,2/3 denotes the cumulative distribution function of the beta distribution
with both shape parameters equal to 2/3, � denotes the cumulative distribution function of
the standard Gaussian distribution, and (T1, . . . , Tq) is sampled from the centred q-dimensional
Gaussian distribution with covariance matrix whose (j, k)th entry is 1 if j = k and 1/5 if j |= k .
Consequently, X1, . . . , Xq are correlated and X1 has a nonuniform distribution on [0, 1]. The mean
μ is an m × m matrix whose (j, k)th entry is 2−|j−k|. We then generate the response variable Y by
Y = μ ⊕ w(X1, . . . , Xq) ⊕ ζ , where w(X1, . . . , Xq) = expτμ,ef (X1, . . . , Xq) with three settings
for f :

I. f (x1, . . . , xq) = ∑q
k=1 fk(xk) with fk(xk) being an m × m matrix whose (j, l)th entry is

g(xk ; j, l, q) = exp(−|j − l|/q) sin[2qπ{xk − (j + l)/q}];
II. f (x1, . . . , xq) = f12(x1, x2)+∑q

k=3 fk(xk), where fk is defined as in setting I, while f12(x1, x2)

is an m × m matrix whose (j, l)th entry is g(x1; j, l, q)g(x2, j, l, q);
III. f (x1, . . . , xq) = f12(x1, x2)

∏q
k=3 fk(xk), where f12(x1, x2) is an m × m matrix whose (j, l)th

entry is exp{−(j + l)(x1 + x2)}/3, and fk(xk) is an m × m matrix whose (j, l)th entry is
sin(2πxk).

The random noise ζ is generated according to logζ = ∑p
j=1 Zjvj, where p = m(m + 1)/2

is the dimension of TeS+
m , Z1, . . . , Zp are independently sampled from N (0, σ 2) and v1, . . . , vp

form an orthonormal basis of the tangent space TeS+
m . The signal-to-noise ratio is measured by

snr = E‖logw(X1, . . . , Xq)‖2
e/E‖logζ‖2

e . We tweak the value of the parameter σ 2 to cover two
settings for the signal-to-noise ratio, namely, snr = 2 and snr = 4. Model I is additive, while
models II and III are not additive. In particular, model III has no additive components and thus
represents the most challenging scenario for the proposed additive regression. We consider q = 3
and q = 4 to probe the effect of the dimensionality of the predictor vector and study sample sizes
n = 50, 100, 200.

The quality of the estimation is measured by the root-mean-square error

rmse =
[ ∫

[0,1]q
d2{μ̂⊕ ŵ1(x1)⊕ · · · ⊕ ŵq(xq), f (x1, . . . , xq)} dx1 · · · dxq

]1/2

.

As a comparison method for the proposed manifold additive model, we also implemented the
intrinsic local polynomial regression proposed in Yuan et al. (2012), which is a fully nonpara-
metric approach. In addition, we implemented the following baseline method proposed by an
anonymous reviewer, which provides a simple and straightforward approach based on Cholesky
decomposition: each symmetric positive-definite matrix is represented by its Cholesky factor,
and then a standard multivariate additive model is applied for the Cholesky factor. This simple
method may be subject to the swelling effect as it does not use a swelling-free geometry on S+

m ;
see Example 1 of Lin (2019) for an illustration. Each simulation setting was repeated 100 times.
The Monte Carlo prediction root-mean-square error and its standard error are shown in Table 1
for the log-Cholesky metric and in Table 2 for the log-Euclidean metric for m = 3; the results for
m = 10 are similar and can be found in the Supplementary Material, where we also graphically
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Table 1. Prediction rmse and its Monte Carlo standard error with m = 3 (log Cholesky)

Setting q n
MAM ILPR CHOL

snr = 2 snr = 4 snr = 2 snr = 4 snr = 2 snr = 4

I 3 50 1.046 (0.093) 0.967 (0.092) 1.604 (0.105) 1.546 (0.233) 1.376 (0.112) 1.329 (0.120)
100 0.695 (0.049) 0.624 (0.040) 1.528 (0.127) 1.452 (0.218) 1.248 (0.108) 1.171 (0.123)
200 0.541 (0.040) 0.412 (0.038) 1.392 (0.110) 1.320 (0.151) 1.200 (0.109) 1.187 (0.117)

4 50 1.665 (0.082) 1.458 (0.154) 1.865 (0.065) 1.871 (0.170) 1.931 (0.096) 1.890 (0.074)
100 1.087 (0.049) 0.965 (0.065) 1.786 (0.033) 1.759 (0.028) 1.829 (0.134) 1.678 (0.045)
200 0.754 (0.073) 0.608 (0.050) 1.743 (0.029) 1.726 (0.033) 1.683 (0.087) 1.616 (0.050)

II 3 50 1.121 (0.045) 1.073 (0.063) 1.399 (0.161) 1.195 (0.128) 1.186 (0.064) 1.156 (0.052)
100 0.910 (0.045) 0.822 (0.037) 1.191 (0.131) 1.125 (0.103) 1.016 (0.085) 0.915 (0.055)
200 0.774 (0.042) 0.711 (0.025) 1.151 (0.122) 1.093 (0.126) 0.861 (0.043) 0.782 (0.026)

4 50 1.495 (0.037) 1.463 (0.049) 1.601 (0.075) 1.644 (0.117) 1.654 (0.076) 1.582 (0.070)
100 1.203 (0.064) 1.117 (0.099) 1.521 (0.025) 1.507 (0.021) 1.569 (0.094) 1.451 (0.062)
200 0.916 (0.051) 0.817 (0.043) 1.481 (0.022) 1.469 (0.020) 1.396 (0.103) 1.350 (0.103)

III 3 50 0.640 (0.054) 0.629 (0.055) 0.713 (0.107) 0.696 (0.101) 0.593 (0.053) 0.609 (0.050)
100 0.574 (0.041) 0.555 (0.050) 0.678 (0.051) 0.616 (0.077) 0.559 (0.042) 0.547 (0.063)
200 0.530 (0.043) 0.515 (0.045) 0.637 (0.084) 0.589 (0.067) 0.535 (0.037) 0.526 (0.051)

4 50 0.603 (0.059) 0.551 (0.036) 0.647 (0.068) 0.624 (0.097) 0.602 (0.055) 0.597 (0.036)
100 0.584 (0.048) 0.549 (0.046) 0.616 (0.092) 0.617 (0.054) 0.573 (0.041) 0.576 (0.045)
200 0.540 (0.063) 0.521 (0.039) 0.586 (0.058) 0.583 (0.037) 0.584 (0.061) 0.566 (0.038)

MAM, the proposed manifold additive model; ILPR, intrinsic local polynomial regression proposed in Yuan et al.
(2012); CHOL, a baseline method based on Cholesky decomposition; snr, signal-to-noise ratio.

Table 2. Prediction rmse and its Monte Carlo standard error with m = 3 (log Euclidean)

Setting q n
MAM ILPR CHOL

snr = 2 snr = 4 snr = 2 snr = 4 snr = 2 snr = 4

I 3 50 2.452 (0.258) 2.122 (0.218) 3.450 (0.396) 3.121 (0.351) 3.441 (0.323) 3.129 (0.301)
100 1.576 (0.094) 1.305 (0.127) 3.135 (0.240) 3.120 (0.217) 3.034 (0.218) 2.890 (0.260)
200 1.217 (0.067) 0.914 (0.060) 3.025 (0.109) 2.945 (0.190) 2.922 (0.172) 2.823 (0.223)

4 50 3.573 (0.182) 3.355 (0.350) 3.949 (0.205) 3.879 (0.132) 4.478 (0.299) 4.388 (0.223)
100 2.436 (0.201) 2.079 (0.163) 3.712 (0.196) 3.680 (0.184) 4.173 (0.224) 4.059 (0.276)
200 1.802 (0.176) 1.333 (0.120) 3.621 (0.152) 3.603 (0.137) 4.015 (0.231) 3.701 (0.274)

II 3 50 2.418 (0.107) 2.239 (0.120) 2.736 (0.259) 2.517 (0.126) 2.756 (0.175) 2.467 (0.112)
100 1.960 (0.149) 1.750 (0.077) 2.493 (0.290) 2.480 (0.301) 2.491 (0.183) 2.140 (0.155)
200 1.665 (0.083) 1.563 (0.051) 2.440 (0.311) 2.411 (0.223) 1.954 (0.112) 1.782 (0.062)

4 50 3.292 (0.341) 3.150 (0.254) 3.396 (0.266) 3.412 (0.276) 3.693 (0.245) 3.654 (0.289)
100 2.769 (0.286) 2.442 (0.108) 3.215 (0.286) 3.201 (0.251) 3.475 (0.250) 3.424 (0.189)
200 2.151 (0.102) 1.872 (0.073) 3.149 (0.230) 3.130 (0.235) 3.289 (0.279) 3.207 (0.308)

III 3 50 0.850 (0.030) 0.937 (0.138) 1.093 (0.080) 0.922 (0.063) 0.875 (0.042) 0.833 (0.059)
100 0.801 (0.050) 0.762 (0.042) 0.895 (0.055) 0.813 (0.074) 0.875 (0.165) 0.823 (0.060)
200 0.706 (0.048) 0.674 (0.063) 0.829 (0.033) 0.801 (0.037) 0.773 (0.067) 0.753 (0.074)

4 50 0.853 (0.066) 0.832 (0.058) 1.002 (0.074) 0.902 (0.062) 0.889 (0.077) 0.872 (0.096)
100 0.837 (0.044) 0.832 (0.039) 0.890 (0.066) 0.845 (0.071) 0.871 (0.058) 0.855 (0.057)
200 0.815 (0.059) 0.802 (0.032) 0.844 (0.056) 0.810 (0.052) 0.860 (0.088) 0.839 (0.043)

MAM, the proposed manifold additive model; ILPR, intrinsic local polynomial regression proposed in Yuan et al.
(2012); CHOL, a baseline method based on Cholesky decomposition; snr, signal-to-noise ratio.

illustrate the estimation quality of the proposed method for snr = 4, q = 3, m = 3 and the
log-Euclidean metric.

When the model is correctly specified as in setting I, the proposed model outperforms the
other two methods by a significant margin. When the underlying model is not fully additive, but
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contains some additive components, such as the model in setting II, our proposed approach still
outperforms the other two methods. When the true model has no additive components, such as the
model in setting III, all methods have comparable performance when data are sampled from the
log-Cholesky metric, while our method and the Cholesky-based method exhibit advantages for
the log-Euclidean metric. Also, our method enjoys smaller prediction root mean squared error,
compared to the baseline Cholesky method in settings I and II, while both have similar prediction
root-mean-square error in setting III. As the true model is unknown in reality and our method
is competitive even when there are no additive components, our proposed manifold additive
model is overall preferable in applications. In terms of computational efficiency, we found that
the log-Cholesky metric is computationally faster than the log-Euclidean metric. In addition,
the proposed method for the log-Cholesky metric and the baseline method have comparable
computational efficiency, while intrinsic local polynomial regression is fastest in computation;
see the Supplementary Material.

7. Application to diffusion tensor imaging

We applied the proposed additive model to diffusion tensors obtained from the Alzheimer’s
Disease Neuroimaging Initiative, ADNI. Diffusion tensors are 3 × 3 symmetric positive-definite
matrices that characterize diffusion of water molecules in tissues, and convey rich information
about brain tissues with important applications in tractography. They are utilized to aid in the
diagnosis of brain-related diseases. In statistical modelling, diffusion tensors are typically con-
sidered to be random elements in the space S+

3 (Fillard et al., 2005; Arsigny et al., 2006; Lenglet
et al., 2006; Pennec, 2006; Fletcher & Joshib, 2007; Dryden et al., 2009; Zhu et al., 2009; Zhou
et al., 2016; Pennec, 2020). A traditional Euclidean framework for diffusion tensors suffers from
significant swelling effects that undesirably inflate the diffusion tensors (Arsigny et al., 2007) and
impede their interpretation. In our analysis we use diffusion tensors as responses under the log-
Euclidean metric, which is designed to eliminate the swelling effect and relate these responses
to several covariates.

We focus on the hippocampus, which plays a central role inAlzheimer’s disease (Lindberg et al.,
2012). In the ADNI study, brain images and assessment of memory, executive functioning and
language ability were obtained for participating subjects. For each raw diffusion tensor image,
a standard pre-processing protocol including denoising, eddy current and motion correction,
skull stripping, bias correction and normalization was applied and then diffusion tensors for each
hippocampal voxel were extracted, followed by computing their log-Euclidean mean. For each
raw image, this resulted in an average diffusion tensor representing the typical hippocampal
diffusion of the corresponding subject at the time of visit. To study the relation between the
average hippocampal diffusion tensor and memory, executive functioning and language ability
of the subject, we utilized the neuropsychological summary scores available fromADNI (Gibbons
et al., 2012). We only included data from the first visit of subjects who were diagnosed as having
either early mild cognitive impairment, mild cognitive impairment, late mild cognitive impairment
or Alzheimer’s disease. Records with missing values were excluded, under the assumption that
missingness occurs at random. This resulted in 220 data tuples of the form (Y , X1, X2, X3), where
Y is the average diffusion tensor, which serves as response, while the predictors X1, X2, X3 are
standardized scores for memory, executive functioning and language ability, respectively.A subset
of the data is presented in Fig. 1.

The estimated component functions ŵ1(x1), ŵ2(x2), ŵ3(x3) and their individual effect on the
diffusion tensors are depicted in Fig. 2. For interpretation, we denote the coordinate system of
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Fig. 1. A random sample of 15 observations from the data.
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ŵ

1
,ŵ
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Fig. 2. Estimated additive component functions ŵ1, ŵ2, ŵ3 and their effect on the response when other component
functions are fixed at identity.

R
3 that was adopted to record the diffusion tensors by {e1, e2, e3}, so that the matrices presented

in Figs. 1 and 2 indicate the coefficients of the corresponding diffusion tensors in this coordinate
system. We find that the component functions have distinct effects on the outcome.

Considering, for example, how ŵ3, which encodes the fit for language ability as predictor and
acts on the average diffusion tensor μ̂ by the group operation ⊕, affects the diffusion along the
directions e1 and e2, we find that they become increasingly negatively correlated as the stan-
dardized language ability drops, indicating nonlinear changes in the diffusion that are associated
with changing language ability. As a second example, consider ŵ1, which encodes the effect of
memory. A negative correlation between e1 and e2 at high memory levels changes into a positive
correlation as memory levels drop in a nonlinear fashion, suggesting distinctive relationships
between diffusion patterns and performance scores.
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This leads to the question of whether the covariates Xk for k = 1, 2, 3 are significantly related
to the spatially averaged hippocampal diffusion tensor and motivates testing the global null
hypothesis

H0 : wk(xk) = I3 for all xk , (10)

where I3 denotes the 3×3 identity matrix that is also the group identity of the Lie group (S+
m , ⊕)

in the log-Euclidean framework, that is, P ⊕ I3 = P for all P ∈ S+
3 . Corollary 2 can be employed

for testing this hypothesis: for a set Hk of values of X1, a test based on the asymptotic normality
of Corollary 2 can be implemented to obtain the p-value for testing the local null hypothesis
H0 : wk(xk) = I3 for each xk ∈ Hk , followed by adjustment for multiple comparisons, for
example, by the Benjamini–Hochberg method. Here, a natural choice of Hk is the set of the
observed values for Xk in the data. The global null hypothesis (10) is then rejected if at least one
adjusted p-value is less than the nominal level α. Implementing this approach and applying it to
the ADNI data leads to rejecting the null hypothesis (10) at the level α = 0.05 for all k = 1, 2, 3,
with the minimal corrected p-values 1.028 × 10−9, 1.80 × 10−5 and< 10−10, respectively. This
suggests that there are indeed associations between the spatially averaged hippocampal diffusion
tensor and memory, executive functioning and language ability.

8. Discussion

There are at least three potential extensions of the proposed methods and theory. First, in the
data application we consider the spatially averaged hippocampal diffusion tensor. Although sig-
nificantly reducing the data noise level, the average may conceal some spatial structure of interest
within the hippocampus. One way to address this problem is to view all hippocampal diffusion
tensors derived from an image as an S+

3 -valued function Y : s 	→ Y (s) ∈ S+
3 with s ranging

over all hippocampal voxels. This functional perspective enables one to borrow information from
neighbouring voxels to counter the high-level data noise. However, it is rather challenging to
develop an additive model for S+

3 -valued functions (see Dubey & Müller, 2020).
Second, we focus only on the first visit of each subject, and thus do not utilize all available

data. To analyse the data of repeated visits that by default are correlated, the theory needs to be
extended to account for such correlation, which seems nontrivial, especially when the number of
visits may grow with the sample size. Third, when testing hypothesis (10), we perform multiple
local tests by using the pointwise asymptotic normality of Corollary 2 and then make corrections
for multiple comparisons. This approach, although sufficient for our data application, will be too
conservative in general. An alternative method is to develop an asymptotic normality result for
the random process {ŵk(x) : x ∈ Xk}, which may lead to more powerful one-step tests. These
extensions are left for future studies.
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